ABCDE, an Agile Method to Specify
and Design Blockchain Applications

Michele Marchesi

Dept. of Mathematics & Computer Science
University of Cagliari

Blockchain '

-The Blockchain is a technology whose first application was to run
the Bitcoin cryptocurrency in a decentralized and secure way

-It is a distributed data structure characterized by:

—-data redundancy

—check of transaction requirements before validation

-recording of transactions in sequentially ordered blocks

—-ownership based on public-key cryptography

-Immutability

—-a transaction scripting language, associated to the transactions
- the corresponding program is executed by all nodes

Smart Contracts (SC)

- The software associated to transactions
and running on the Blockchain

- The SC run in every node

- All executions must produce the
same result

- The calls and the storage modifications
are recorded Smart Contract
Storage

- A SC cannot access any device or
network

- The figure outlines the Ethereum
approach for SC

- In the past few years, there has been a strong increase of interest in
cryptocurrencies, in Blockchain applications and in Smart Contracts

Software Engineering for dApps

- This led to a huge inflow of money and of startup ideas
- Many projects were born and quickly developed software

- The scenario is that of a rush to be the first on the market,
fearing of missing out

- This unruled and hurried software development does not assure
neither software quality, nor that the basic concepts of software
engineering are taken into account

Goals '

- We propose ABCDE - Agile BlockChain Dapp
Engineering, a software development process to:

- Gather the requirements
-Analyze, Design

-Develop, Test

-Deploy Blockchain applications

- The process is based on Agile practices

- [t makes also use of more formal notations, modified to
represent specific concepts found in Blockchain
development

The case for Agile 4

- Agile methods are suited to develop systems whose
requirements are not completely understood, or tend to
change. These characteristics are present in dApps:

* dApps are typically very innovative applications;

* often, there is a run to write a dApp to be the first who
launches it on the market.

- Most dApp teams are small, self-organizing, with experts in the
system requirements highly available to the team.

- Agile is iterative and incremental with short iterations, and is
suited to deliver quickly and to deliver often - which is very
appreciated in the context of dApp development.

The case for traditional SE '

- dApps have very strict security requirements, and a more
formal approach with respect to some aspects of the
development could be useful.

- Some key factors in SC design are:

* Data: permanent data are very expensive, so they must be
well designed and kept to a minimum.

* Interactions: they are key to system proper behavior, and
the source of all attacks.

* Security: in a public blockchain, if there is a possible exploit,
it will be exploited!

ABCDE — Malin Steps '

- Steps 1-3: Gather requirements (without assuming
the use of a blockchain)

- Step 4: Divide the system in two subsystems:

- Step 5: the blockchain system (SC)
- Step 6: the external system (server, client, GUI)

* Step 7: Test the two subsystems

* Step 8: Integrate and deploy

Steps 1 and 2 \

1.Define in one or two sentences the goal of the
system. For instance: To create a simple crowfunding
system, managing various projects that can be financed
using Ethers

2.ldentify the actors (human and external
systems/devices). For instance:

1.System Administrator: s/he accepts the projects and their
property; takes action in the case of problems

2.Fund Raiser: they give the crowfunding project data, including
the address receiving the money

3.Crowfunder: they finance projects sending Ethers

Step 3 - User Stories 4

-Write the system requirements in term of user stories
or features:

- Create System: The Administrator creates the contract,
that register his address

- Start Campaign: A Fund Raiser activates a CF project,
giving its data: soft and hard cap, end date, address where
to send money to

- Cash Campaign: The Fund Raiser, if the time of the CF has
expired, or if the hard cap has been reached, cashes out the
Ethers given to the project

10

Step 3 - User Stories (cont.d)

*Delete Campaign: The Fund Raiser cancels the
project; the Ethers are given back to Crowfunders

*End Campaign: The Administrator, or the Fund
Raiser, If the time of the CF has expired and the soft
cap has not been reached, ends the project; the
Ethers are given back to Crowfunders

*Finance a Project: a Crowfunders sends Ethers to a
project

11

Create System

UML Use Case
@ Diagram

Administrator FU”d Raiser (W ith U Se r Sto ri e S

@ In place of Use
Cases)

End Campaign i
@ce = PrB Crowfunder

Step 4 - Divide into SC system and external system '

- Divide the system in two separate systems:

-The Blockchain system, composed by the SCs

-The external system that interacts with the first, sending
transactions to the Blockchain and receiving the results

- The SC system interacts with the outside exclusively through
blockchain transactions.

-It has actors, recognized by the respective address
-It can use libraries and external contracts
-It can generate transactions to other contracts, or can send Ethers

- The client / server system is the one described in the previous steps
-But it adds the interface to the SCs

13

A Typical dApp Architecture

" App System (server)

_ Business logic
 w Web3js | ORM

, ~u=|
Javascript| DBMS |, |(ina server or

engine engine distributed)

-

Smart Contract 0s

Storage
EVM

,I

._\\.

Ethereum blockchain . 0s
(public, test or private)

App System (Ul enabling
a User to interact with
the dApp)

Step 5 - Design of the SC subsystem ?

-Redefine the actors and the user stories
-Define the decomposition in SCs (one or more)

*For each SC, define the structure, the flow of
messages and Ether transfers, the state diagram
(if needed), the data structure, the external
interface (ABI), the events, the modifiers...

‘Define the tests and the security assessment
practices

15

Specific stereotypes of UML class diagram describing SCs ’

Stereo EE_

<<contract>> compartment Denotes a SC
<<l|ibrary contract>> A contract taken from some (standard) libra

A struct, holding data but no operation,
defined and used in the data structure of a
<<struct>> Same as above contract

<<enum>> Same as above A struct holding just a list of possible values

<<interface>> Same as above A contract holding only function declarations

<<modifier>> compartment A particular kind of function, defined in Solidi
s ot ot [, 0= oot
<<array>> Role of an association |arra

The 1:n relationship is implemented using a
<<mapping>> Same as above '

<<mappingluint]>> Same as above mapping from integer to the value

16

Specific stereotypes of UML sequence diagram '
describing interactions

:

_ human role, sending messages using a
<<person>> wallet or other application
An external system, able to send messages to
<<gystem>> the blockchain

pically loT, able to send messages

<<contract>> |ASC, part of the system or external to it

A particular kind if SC, whose data are written

by a trusted third party, and allows to access
<<gracle>> information about the external world

An Ethereum account, just holding Ethers. It

can only receive Ethers or send Ethers to

another account or SC if the owner activates
<<account>> the transfer

: 74

Step 6 - Design of the external subsystem '

- Redefine the actors and the user stories, adding the new
(passive) actors represented by the SCs

- Decide the architecture of the system
- Define the decomposition in modules, and their interfaces
- Define the User Interface of the relevant modules

- Perform a detailed design of the subsystem

- Perform a security assessment

18

ABCDE - Steps 7 and 8 \

7. Code and test the systems; in parallel and using
iterations:

-Write and test the SCs, starting from their data structure
and functions;

-Implement the USs of external subsystem with an agile
approach (Scrum, maybe Kanban);

8. Integrate, test and deploy the overall system,
every 3-4 iterations.

19

ABCDE -

2. Identify actors
]
O V e I a V I e W Iteration
3. Define system USs,

UC and class UML Diagram

4. Divide the system
Y Iteration
Iteration

SC system External system

5. Design the SC system: 6. Design the external system:
5.1 redefine actors and USs 6.1redefine actors and USs
5.2 SC decomposition 6.2 design the architecture

5.3. define the messages 6.3 design the UI
5.4 define the data structure 6.4 design modules, messages, DB structure
5.5 define the modifiers and functions 6.5 define the detailed interfacees
5.6 security assessment 6.6 security assessment

7.2. Write and test the code:
- DB tier
- Client tier

8. Integrate, test and deploy
the dApp system

A Case Study: Corporate ©
voting management

1. GOAL OF THE SYSTEM:

-To manage in a simplified way voting in corporate
assemblies

2. IDENTIFY ACTORS:

- Corporate administrator: manages the system,
manages the shareholders and their shares, convenes
assemblies, calls for votings

-Shareholder: participates to assemblies, casts his votes,
delegates participation to assemblies

21

Create the system

Verify the validity of an assembly

Step 3. User
Stories

.’II e
Y Call for a voting
."4

Delegate participation

%\
L}

Change administrator

Cast a vote

Administrator <<DataTypes=> <<DataType>>
Address

name : String DateTime
-Jaddress : Address

administrator

Firm

name : 5tring 3

_ Step 3. The data
e Fo structure

isdhjslgedﬁd;;r;t;gef 1 |percSharesValid : Integer

W e representing this
assembly 4 SySte m ;

shown using a
Delegation votings | 0-* U M L C I a55

Voting

diagram
choiceB : String

percSharesValid : Integer
perc/otesNeeded : Integer

\|ghareholders Assembly

de]egate delegator

‘Jote

choice : String

Step 4. Divide the system

‘In this case the subdivision is trivial, because all US make use of Smart
Contracts.

‘The DApp subsystem US are the same. Each includes the Blockchain as
further Actor.

‘The Blockchain subsystem US are the same. The identifiers of the Actors
are their unique adresses:

-Corporate administrator: her/his address is at first the address that creates
the contract, and then possibily a further address set by the Change

administrator US

-Shareholder: their addresses are specified and managed by the Administrator.

24

<<library contract>> <<PrimitiveType>>

<=contract=>>=
Ownable Address

VotingManagement

“|owner : Address

name : String >
adminName : String

[l Step 5. Design of
the SC Dat
SHEreDIcer <<map[uint]>> assemblies ~ Assembly e a a

isdh?;ijsd:rg;geger startTime : Integer f h S C
na.me : String endTime : Integer St ru C t u re 0 t e

percSharesValid : Integer

maxNoDeleg;nteger S h 0 W n u S i n g a
modified UML class

0..* |participations

i S dia gram

Participation : 0. %
votings g

delegated : Address A
noOfDelegations : Integer <=struct>>
totShares : Integer Voting

name : String

choiceA : String

choiceB : String

Vote Q..* percSharesValid : Integer
“<<map[address]>>otes percvotesNeeded : Integef

choice : Integen

UML State diagram of a Shareholder 4

- showing the possible ways of her/his participation to an assembly:

[Assembly not started]
Not participating Participating
registers

[Assembly not started]| delegates [Assembly not started]| get delegation

Delegating Delegated I.
[Assembly not started] get delegation
Delegated No more
delegations [Assembly not started & Max No. delegations]

get delegation

An example of sequence diagram
(of another system: a DEX)

mteractnon ACCeplance ol ar

<<person== <<system>> <<contract>> | [<<contract>> <<person>>
Taker Relayer TokenB DEX TokenA Maker
_‘_J —_'

i
i
[
[
[
i
[
i
[
ir
[}
-
[
]
i

Step 6. Design of the externalsubsystem (ESS) '

*Actors of the ESS:
-Administrator
-Shareholder
-SC subsystem
*Architecture:
-A responsive application for managing the system
-An app for the shareholders (voting and delegating)
‘The app GUIs are designed

‘The apps are developed using the Ethereum API
web3.js library and a dev environment of choice

28

Steps 7 and 8: coding, testing, ’
deploying the system

-Here we give some details of SC security assessment

*We apply a checklist to SC design and code, to assess
their security against known attacks:

-Minimize external calls and check for reentrancy

-Follow the "checks-effects-interactions" pattern

-Check the proper use of assert(), require(), revert()

-Check if there are ways to make the SC permanently stuck due
to gas consumption above the limit

-Have some way to update the contract in the case some bugs
will be discovered

29

Conclusions ’

-Despite the huge effort presently ongoing in developing
DApps, software engineering practices are still poorly applied

-A sound software engineering approach might greatly
help in overcoming many of the issues plaguing blockchain

development:
-Security issues
-Software quality and maintenance issues

-The ABCDE method is the first SE method specifically
Introduced for DAppPS

- It is presently being successfully used in our spinoff company,
FlossLab srl, and in other companies developing DApps

30

Thank you for listening!

If you are interested in ABCDE,
pleas contact me:

- Michele Marchesi
*Email: marchesi@unica.it

KY

