

Pathway in Enterprise Systems Engineering (PENS)

ESE and Blockchain

Salvador Sanchez-Alonso – Univ. de Alcala

July/2022 Universidad de Alcala, Spain

What this talk will cover

- What is Blockchain
- A Little history: From Bitcoin to the world
- Technical details: From blocks to blockchains
- Types
- Governance
- Blockchain related concepts
 - Smart contracts
 - Sidechains
 - Oracles
- Integration in ESE

A quick refresher on ESE

- Unlike traditional systems engineering (TSE), ESE focuses on frameworks, tools, and problemsolving approaches for dealing with the inherent complexities of the enterprise.
- Corporations seek to stay on the blockchain train by exploring how they can benefit from existing technology and platforms
- Fascinating, promising but also... A fast-changing world

What is a blockchain?

A blockchain is...

- A chain of blocks that contains information
- A distributed ledger open to anyone
- A list of transactions that anyone can view and verify
- A shared, immutable ledger that facilitates the process of recording transactions and tracking assets in a network
- A digital ledger of transactions that is duplicated and distributed across an entire network of computer systems
- A distributed approach to collecting and maintaining records, allowing for greater degrees of accuracy, transparency, security and immutability than in centralized approaches

A little bit of history

Bitcoin

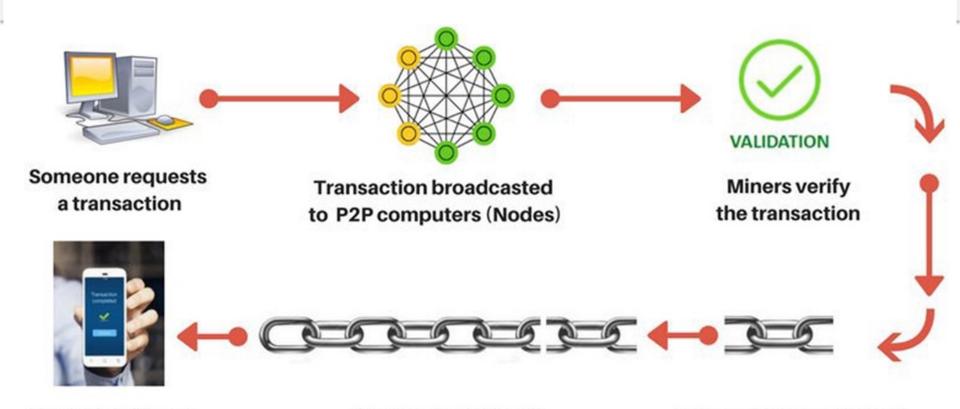
- 13 years ago, a programmer operating under the pseudonym Satoshi Nakamoto deployed a piece of code that would change the world
- Bitcoin: set of concepts and technologies that make up a digital money ecosystem
 - Mining, blockchain, consensus, cryptography
- bitcoin: monetary unit that allows storing and transmitting value among the participants of the Bitcoin network
- The Bitcoin blockchain contains a record of every time someone sent or received bitcoins

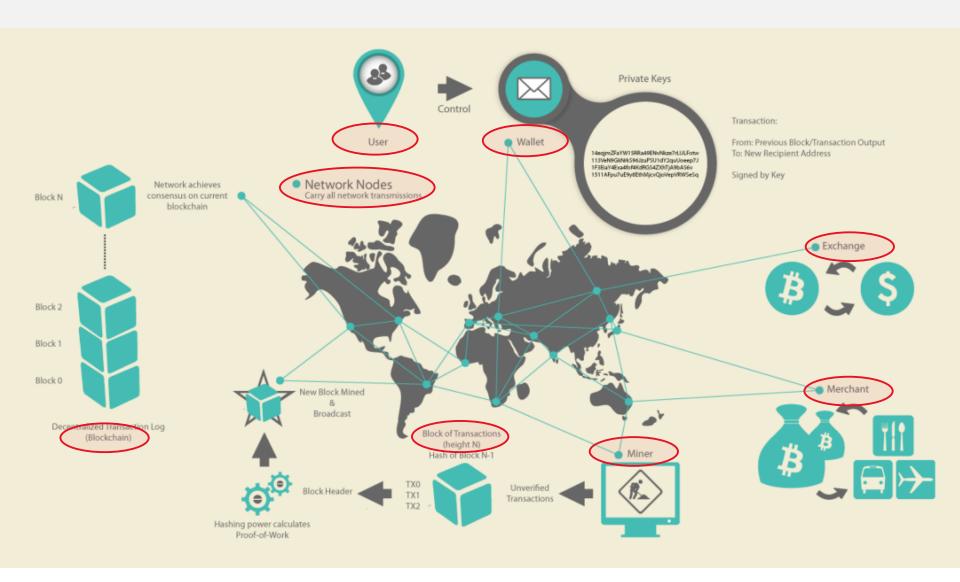
Blockchain contributions to cryptos

- The blockchain technology that powers cryptocurrencies make it possible to transfer value online without the need for a middleman like a bank or credit card company → Decentralization
- Once a data has been recorded it becomes very difficult to change it > Immutability
- Transactions in the blockchain are verified and shared by a huge amount of computing power, what enables secure payments to be made between people who don't know each other → Security

Mining

- Mining nodes (anyone!) create and register transaction blocks in the blockchain every 10 minutes
- High difficulty task → advanced computational resources
- Competitive fight for a (declining) reward → halving
- Based on a problem which is difficult to solve but easy to verify → Proof of work


Miners


HOW BITCOIN TRANSACTION WORKS

The transaction is complete New block added to existing Blockchain Transactions combined to form a data block

The Blockchain concept revisited

- A type of database to record and maintain data with the unique character of (a) having distributed / decentralized ledger approach and (b) temporally ordered
 - In a centralized database, a single authority has full control over all aspects, including data entry, ensuring its validity and the maintenance of that data.
 - In the decentralized blockchain approach, data is recorded in "blocks" that are distributed and validated among several participants (nodes) in a P2P network.
 - Property of coins is based on an ownership chain
- Although anyone can create data on public blockchains by creating a new block and chaining it to a previous block, the consensus-based validation approach means that no one can edit or forge the data once enough block confirmations have been received

Block #734852

Summary

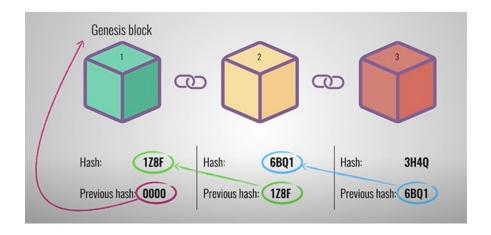
Merkle Root 35290ac10d47f8b162b54fb63876d48feced3fa1a2445e38		Difficulty 1.25901934	
Bits	17097275	Size (bytes)	
Version	545259520	Nonce	326
Number of Transactions	2387	Previous Block	
Height	734852	Next Block	
Block Reward	6.288 BTC	Confirmations	
Timestamp	May 4, 2022 at 10:31:42 AM GMT+2		

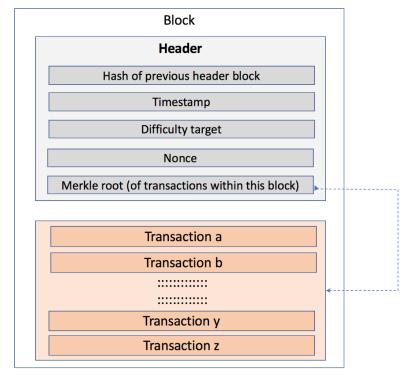
Transactions

Technical

details

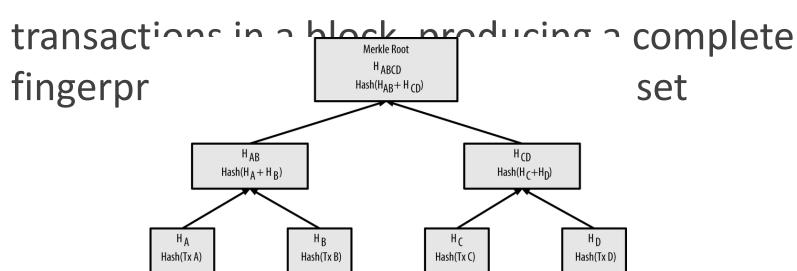
Blocks


- The primary identifier of a block is its cryptographic hash
 - In bitcoin, id is obtained by applying SHA256 with the header twice 32 bytes
 - It is called block hash, it is more accurate to call it header hash.
- Other identifier: block height (not always unique)
- Chain up to the genesis block
- It is possible to reverse a chain for a longer one, but its probability decreases with time



Blocks

- Header + data
- Header: id of this block + id of previous block



Merkle trees

- Binary hash tree used to summarize and validate data sets
- In bitcoin blockchain MTs summarize all

Block creation

- Any node that validates a transaction writes it to the pending transaction pool.
- A miner that receives a block knows that it lost the last competition, but a new one starts.
- It takes transitions from the pending pool and creates the next candidate block.
- While solving the current "puzzle", it receives and accumulates transactions for the next one.

https://www.blockchain.com/btc/unconfirmed-transactions

Types of blockchains

Public blockchains

- Anyone can download the code and manage a public node, validating transactions on the network
- Anyone is entitled to participate in the consensus process of which blocks are put on the chain.
- Anyone can make transactions on the chain: Any valid transaction will be added.
- Anyone can access and view the transactions using a block explorer, (transactions are public, but anonymous).
- Type of blockchain network mostly associated with cryptocurrencies

Blockchain explorer

 \equiv

Dashboard

Blocks

Transactions

Search for block height, hash, transaction, or address

Latest Blocks					
Height	Timestamp	Transactions	Size (KB)	Weight (KWU)	
734870	2022-05-04 13:49:48	2848	1594.082	3993.347	
734869	2022-05-04 13:36:30	3385	1550.539	3993.421	
734868	2022-05-04 13:23:17	2881	1557.11	3992.666	
734867	2022-05-04 13:19:50	3161	1353.295	3992.713	
734866	2022-05-04 13:15:28	3092	1412.959	3999.67	
View more blocks →					

Private and consortium blockchains

"A private blockchain is an oxymoron. The whole reason that the blockchain was invented is to make Bitcoin a decentralized and anonymous system in which everyone can come to the same arbitrary consensus about the history of Bitcoin."

-- Bitcoin researcher and Director of Research at Satoshi Nakamoto Institute, Daniel Krawisz

Private blockchains

- A non-decentralized ledger that operates as a closed, secure database based on cryptography concepts.
- Not everyone can run a full node on the private blockchain, make transactions, or validate/authenticate the blockchain changes.
- Utilities are very restricted to one company and probably are not interesting for public people to access.
- Biggest advantages: simplifying complex data management flows and reducing costs.
- Criticism:
 - The very concept of a closed blockchain negates the need for a blockchain: One could simply use a MySQL database.
 - Marketing strategy, buzzwords...

Public permissioned blockchains

- Permissioned blockchains aren't private blockchains but...
 - add additional access control layer as a security measure
 - only identifiable participants can execute certain on-chain actions
- Examples:
 - Proof of stake networks such as Ethereum
 - Ripple payment network uses a consensus mechanism, via a group of bank-owned servers, to confirm transactions
 - Distribution chain networks where participants have different roles

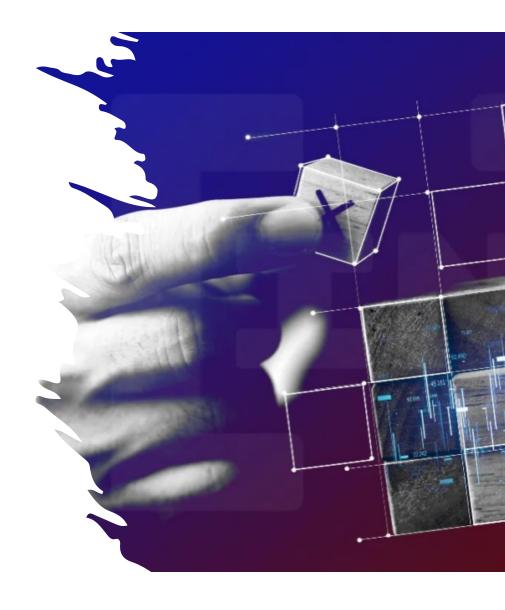
Permissioned blockchains

- A consortium blockchain is a private network for a group of companies
- The consensus mechanism is maintained by a series of nodes that have been pre-selected and trusted in advance
- Difference with private blockchains: pre-selected nodes are not part of a single company.

Blockchain Governance

Blockchain governance

- Mechanisms by which decentralized networks adapt and change over time
- Generally broken up into on-chain governance and off-chain governance.
- On-Chain: protocol upgrades happen automatically in response to coin (token) voting.
- Example: bitcoin's scaling debate (supporters of increasing the block size vs. those proposing to move transaction to layer 2 solutions)


Blockchain governance

- Off-Chain: Network stakeholders coordinate to decide how network upgrades are handled
- Most networks today employ off-chain systems
- Process:
 - Developers submit improvement proposals
 - Network stakeholders coordinate through community channels
 - Protocol developers integrate new features
 - Node operators signal their support or dissent for the changes
 - Miners decide which chain to secure

Blockchain- related concepts

Smart contracts

- A program that runs on the (Ethereum) blockchain.
 - It is a group of code (its functions) and data (its state) that exists at a specific address on the blockchain.
 - Specific programming language: Solidity / Vyper

```
function purchase(uint amount) public payable{
  require(msg.value >= amount * 0.5 ether, "You must pay at least 0.5 ether per donut");
  require(donutBalances[address(this)] >= amount, "OOPS! Not enough donuts");
  donutBalances[address(this)] -= amount;
  donutBalances[address(msg.sender)] += amount;
}
```

- They can not directly access to off-chain information
- Just as a vending machines eliminate the need for an employee, smart contracts can replace middlemen in many industries.

Sidechains

- A separate blockchain which runs in parallel to the "Mainnet" and operates independently.
- Both chains can communicate and complement each other's capabilities.
- Example: RSK enables smart-contracts, near instant payments, and higher-scalability in blockchain.
- How they work:
 - 1. The cryptocurrencies are sent to a specific address
 - 2. Funds are frozen
 - 3. A notification is sent to the sidechain
 - 4. The sidechain will automatically create the exact same number of tokens corresponding to the funds that were sent
 - 5. The sidechain will use the funds for the purpose indicated

Sidechain example: RSK

- How it works
 - 1. The cryptocurrencies are sent to a specific address
 - 2. Funds are frozen
 - 3. A notification is sent to the sidechain
 - 4. The sidechain will automatically create the exact same number of tokens corresponding to the funds that were sent
 - 5. The sidechain will use the funds for the purpose indicated

Oracles

- A data source external to the blockchain, which can forward data from off-chain sources onto blockchains.
 - Data can be used by smart contracts deployed on a blockchain
 - Data sources can be humans, software, or hardware (IoT sensors)
- For smart contracts to craft agreements beyond blockchain data, they need off-chain data in an onchain format.
 - Oracles provide information on weather, financial markets, geolocation, sport or political events, etc.

Integration with ESE

- There is a huge potential for this integration, specifically on the transactions, identity, and logistics dimensions but...
- ...There is scarce literature on blockchain integration with ES
- Recent research suggest that blockchains can reinforce ES by accomplishing a single source of truth and a common environment for shared information

Integration with ESE

 There is a huge potential for this integration, specifically on the transactions, identity, and logistics dimensions but...

...There is scarce literature on blockchain integration with ES

Integration with ESE

 Recent research suggest that blockchains can reinforce ES by accomplishing a single source of truth and a common environment for shared information

 Specially interesting in 3 areas: Transactions, identity and logistics

Transactions

- Blockchain is valuable for entities transacting with one another
- Permissioned participants can access the same information at the same time to improve efficiency, build trust and remove friction

Identity

- The traditional identity systems of today are fragmented, insecure, and exclusive
- Blockchain enables more secure management and storage of digital identities by providing unified, interoperable, and tamper-proof infrastructure
- Key benefits to enterprises, users, and IoT management systems

Logistics

- Blockchain can help make logistics companies more efficient via a public ledger system that records the motions of each shipping container.
- Such data allows companies to, e.g. implement faster routes and eliminate unnecessary steps in the delivery process.

salvador.sanchez@uah.es

Thank you for your attention!

